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Introduction
The growing market for battery electric vehicleshas resulted in an increasingdemand for battery materials that meet the requirements of low cost, high safety, long lifetime and high energy density [1]. Solid-state
batteries offer an opportunity for enhancement in severalof these areas. For example, the absenceof a flammable, toxic and potentially leaking liquid electrolyte clearly enhancesbattery safety [2]. To achievea high
energydensity, the positiveand negativeelectrodematerialsmust havehigh specificcapacitiesalong with a high and low reduction potential, respectively. For the negativeelectrode,siliconfulfills thesecriteria with a very
high theoretical specificcapacityof 3579 mAh g-1 [3] and a suitable delithiation potential of approx. 0.4 V vs. Li/Li+ [3,4]. Also, in contrast to lithium metal electrodes,silicon electrodesare significantly lessprone to the
dendrite growth that would causesafety issuesand limit the cycle life. The main challengesof silicon electrodesin cells with a liquid electrolyte result from the large volume changesof silicon during (de)lithiation. A
flexible polymer electrolytemay help to compensatethesevolume changesand thereby minimize the related issueslike disintegration of the electrodesand irreversiblelossof lithium.
In this work, the development of nano-silicon polymer electrodesis presented. The anode contains a hybrid inorganic-organic polymer electrolyte (HPE). The HPEused in this work is basedon a molecular hybrid polymer
with polyether organic domains and an inorganic SiO2 network [5]. The electrochemicalperformance of the silicon polymer electrodesis examinedin solid-state cellswith a lithium counter electrode. The rate capability,
capacityretention as well as side reactionsin the first cycleare identified as challengesto be addressedin the HPE-basedcells. Different approacheslike the variation of the conductive salt and the use of plasticizersare
implemented.
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Conclusions and outlook
Siliconpolymer electrodeswere successfullyprepared via an infiltration-basedroute and tested in cellswith a hybrid polymer membraneas electrolyte and a lithium counter electrode. Electrodeswith an areal capacityof
0.9Ɖ1.5 mAh cm-2 achievea high capacityof approx. 1000Ɖ1400 mAh g-1 at a C-rate of C/10. Theuseof LiFSIinsteadof LiTFSIasconducting salt significantly improvesthe capacityretention, however, at the expenseof
reducedcurrent densityacceptancedue to the lower conductivity of the LiFSI-containing HPE. Theaddition of an ionic liquid increasesthe electrolyteconductivity at 60 °C from (0.36±0.08) to (0.94±0.07) mScm-1 in the
TFSI--basedHPEand from (0.24±0.11) to (0.74±0.17) mS cm-1 in the FSI--basedHPE. In the TFSI--containing Si/Licells, the IL leads to a decreaseof the coulombic efficiency while in the FSI--basedcells, the IL does not
significantly influence the CE. Thecapacityretention is not asgood as in the LiFSI-containing cellswithout IL.
In addition to the simultaneousachievementof a high current density acceptanceand a good capacityretention, significant side reactionsand a low CEin the early cyclesare the main challengeto be addressed. Thisis
particularly important with regard to the transition from half cells to full cells,where the lithium inventory is limited. Assumingthat the side reactionsconsumelithium, effective strategiesto counter the lithium lossare
critical. Therefore,further stepswill include full cell testing to investigatethe role of a limited lithium inventory. In caselithium lossis confirmed to inhibit long-term cycling in full cells,further additives,pre-lithiation of the
siliconelectrodeand overdimensioningof the positiveelectrodewill be consideredto reduceor compensatelithium loss.
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