Investigating changes in kinetics and transport over NCA/Gr-SiO_x battery lifetime

Malgorzata Wojtala¹, Ferran Brosa Planella^{2,3}, Alana A. Zülke^{3,4}, Harry E. Hoster^{3,4,5}, David Howey^{1,3} ¹ University of Oxford, ² WMG University of Warwick, ³ The Faraday Institution, ⁴ Lancaster University, ⁵ The Hydrogen and Fuel Cell Center ZBT GmbH

UNIVERSITY OF OXFORD

1. Background

2. Methods

A number of model parameters are affected by battery 0 ageing, but conventional parameterisation of the anode and cathode is no longer possible.

Hypothesis: It is possible to maintain model accuracy throughout battery lifetime via parameter optimisation,

Parameters affected by ageing:

* 3 months relaxation at 23 °C in between (due to COVID-19)

 $\cdot 2$

without inclusion of degradation models

- Objective 1: Identify the main degradation modes 0 appearing in three groups of cells via DVA and track kinetic and transport changes throughout battery lifetime via model parameter adjustment.
- Objective 2: Compare identifiability of selected parameters 0 when diffusion is a function of stoichiometry versus a constant.

Knowledge gap

- All electrochemical models are sensitive to the value of the 0 diffusion (D_+) , which varies with concentration, but in most cases it is taken as a constant or adjusted between datasets to match experimental results.
- D_+ measurement methods are questionable. 0
- With the (ir)reversible morphological changes experienced 0 by the particles (e.g. cracking or volume expansion) the Fickian diffusion is expected to change as well.

- - stoichiometric limit x_{-}
 - diffusion time t_D \bullet
- kinetic rate constant k_{-} \bullet
- active material volume fraction ε_{s} –

Diffusion time increases as battery ages. 0

$$t_{D_{\pm}} = \left(\frac{\lambda_{D\pm}D_{\pm}}{R_{\pm}^2}\right)^{-1} = \frac{4}{\pi} \left(\frac{I}{3FAL_{\pm}}\frac{\mathrm{d}U_{\pm}/\mathrm{d}c_{\pm}}{\mathrm{d}V_{\pm}/\mathrm{d}\sqrt{t}}\right)^{-1}$$

Diffusion ageing parameter $\lambda_{D_{-}}$ is introduced to account for any diffusive or morphological changes induced by ageing.

3. Results: parameter optimisation for an isothermal SPM for aged cells

An isothermal single particle model (SPM) is simulated in COMSOL Multiphysics[®] with 0 MATLAB[®] via LiveLink[™] using the Artemis motorway drive cycle.

Parameter sensitivity matrices C_{Df} and C_{Dc} reveal that diffusion as a function of 0 stoichiometry (C_{Df}) improves parameters identifiability [1], as the linear correlation between sensitivities is half the magnitude of C_{DC} when diffusion is a function.

$\min_{p} \sum_{i=1}^{N_t} \left(E_i^{\text{sim}} - E_i^{\text{exp}} \right)^2$	Optimisation parameter	Group A	Group B
	<i>x</i> _	0.74	0.65
$p = \{p_1, p_2, \dots p_n\},\$	E _S _	0.875	-
$p_k^l \leqslant p_k \leqslant p_k^u$	k_	5.5e-11	4.6e-11
	λ_{D}	1	-

Group C

0.65

0.83

1.6e-11

0.7