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Abstract

Electrochemical models are more and more widely applied in battery diagnostics, prognostics and fast

charging control, considering their high fidelity, high extrapolability and physical interpretability. However,

parameter identification of electrochemical models is challenging due to the complicated model structure

and a large number of physical parameters with different identifiability. The scope of this work is the

development of a data-driven parameter identification framework for electrochemical models for lithium-ion

batteries in real-world operations with artificial intelligence, i.e., the cuckoo search algorithm. Only current

and voltage data are used as input for the multi-objective global optimization of the parameters considering

both voltage error between the model and the battery and the relative capacity error between two electrodes.

The multi-step identification process based on sensitivity analysis increases the identification accuracy of the

parameters with low sensitivity. Moreover, the novel identification process inspired by the training process

in machine learning further overcomes the overfitting problem using limited battery data. The data-driven

approach achieves a maximum root mean square error of 9 mV and 12.7 mV for the full cell voltage under

constant current discharging and real-world driving cycles, respectively, which is only 17.9% and 42.9% of

that of the experimental identification approach.
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1. Introduction

1.1. Motivation

Driven by both political and technological initiatives towards ecological mobility, transportation electri-

fication in various areas, such as vehicles, trains, ships and aircraft, is becoming more and more popular.
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Among all the energy sources for the electrified transportation applications, such as plug-in hybrid electric

vehicles (PHEVs), hybrid electric vehicles (HEVs), and electric vehicles (EVs), the lithium-ion battery (LIB)

is one of the most promising candidates, combining high energy density, low self-discharge, long lifetime and

reliable safety [1]. Over the past years, significant research has been conducted to build sophisticated mod-

els in different scales to estimate and predict battery dynamics. Compared with equivalent circuit models

(ECMs), which are used in most battery management systems (BMSs), the electrochemical models (EMs)

promise numerous improvements considering extrapolation ability and physical representation of battery

internal states, especially under extreme conditions.

Although various research has been conducted to accomplish tasks in BMS based on EMs, such as state

estimation [2–4], aging identification [5], power prediction [6] and fast charging control [7], fast and accurate

identification of all the parameters in the EMs for new batteries remains as one of the challenges due to

a large number of parameters with various sensitivities and the high nonlinearity and complexity of the

battery model. While the formulation of the model equations in EMs can also be dealt with abstractly for

all batteries with different chemistry, the parameterization must be carried out individually for each specific

cell as the parameter values may vary due to different cell designs. Conclusions about the internal states

of the battery can only be drawn if an accurate parameter set of the model is provided. Ecker et al. [8, 9]

determined and parameterized an EM for an NMC/graphite pouch cell experimentally by opening the cell

under an argon atmosphere and measuring the parameters with various laboratory apparatus. Similarly,

Schmalstieg et al. [10, 11] further extracted the physical parameters together with thermal parameters from a

high-power prismatic cell by opening the cell and measuring the parameters experimentally. Although these

pioneering work provided not only parameter values for specific cells but also the determination procedures

in detail, invasive parameter identification steps can be very time-consuming, expensive and lack accuracy

for some dynamic applications.

1.2. Literature review

Although the poor identifiability of the model parameters caused by nonlinearities, redundant definitions,

intertwined physical phenomena and time-scale separations in battery dynamics [12] is a great challenge,

data-driven non-invasive methods are attracting more and more attention from both industry and academy

due to the cost and time reduction compared with invasive experimental procedures. In some cases, the cells

are even not allowed to be opened for the post-mortem measurement due to a non-disclosure agreement with

the cell manufacturer, which further raises the requirements on accurate and fast data-driven parameter

identification methods. Among the approaches found in the literature, various gradient-based nonlinear

least-square regression algorithms have been used widely to identify the parameters by minimizing the sum

of the squared voltage errors. Boovaragavan et al. [13] estimated four transport and kinetic parameters

using a reformulated EM for an LCO/graphite cell. Similarly, Ramadesigan et al. [14] identified effective
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kinetic and transport parameters from experimental data. In both cases, the Jacobian-based Gauss-Newton

method was used to solve the nonlinear regression problem. Considering the better efficiency over the Gauss’

algorithm in dealing with nonlinear problems, Santhanagopalan et al. [15] identified five parameters under

constant charge and discharge currents for the pseudo-2-dimension (P2D) model and a reformulated EM,

respectively, using the Levenberg-Marquardt method. In Ref. [16], nine parameters were identified with the

same algorithm for a reduced-order EM. However, no experimental validation with a LIB cell was carried

out to verify the identification reliability. Schmidt et al. [17] further increased the number of identifiable

parameters by adding the number of experiment datasets, which exposed the contribution of the increase

of experimental data to a successful parameter identification. A total of 24 parameters were identified with

the pattern search algorithm for an extended single particle model.

With the success of artificial intelligence, especially the metaheuristic algorithms, which is a group of bio-

inspired gradient-free iterative optimization processes that are immune to local minimum traps [18] in solving

the global optimization problems in other research fields, more and more research was conducted successfully

in identifying the physical parameters of EMs. Genetic algorithm (GA) is one of the most frequently used

metaheuristic algorithms for data-driven parameter identification [19–28]. Forman et al. [19] assessed the

parameter identifiability with Fisher information and identified a set of 88 parameters of a P2D model by GA

based on constant-current charge and discharge dataset. However, the dataset doesn’t include the data with

high dynamics, which are essential for the identification of impedance-related parameters. The identification

of a large number of insensitive parameters not only increases the computation burden exponentially but

also doesn’t contribute to any significant model performance increase. Zhang et al. [21, 22] proposed a

multi-objective optimization approach considering both voltage and temperature error of the model for the

identification of 25 parameters with GA. In comparison, Li et al. [23] proposed a divide-and-conquer strategy

to divide the full set of P2D parameters into two groups for separate identification with GA. However, the

identified parameters were not validated under other experimental conditions. In Ref. [24], Pang et al.

proposed a systematic parameter identification scheme to conduct the identification of 16 parameters for

an extended SPM with GA and validation against the different experimental data acquired from a 2 Ah

NMC/graphite cell.

Compared with GA, particle swarm optimization (PSO) has an inbuilt guidance strategy, which offers

distinct notable advantages, e.g., greater diversity and exploration, faster convergence and more variety

in search trajectories. The use of memory to store the previous best solutions obtained by every candi-

date results in faster convergence and higher robustness of PSO. Therefore, it has also been used in the

identification of parameters for both ECMs [29] and EMs [30]. Rahman et al. [30] tracked the change of

four parameters of a cylindrical cell with an LCO cathode during aging by PSO. Yang et al. [31] identified

16 physical parameters based on the discharge experiment of 0.5 C with PSO. Chu et al. [32] designed a

multi-step approach to identify different parameters divided by frequency decomposition in each step and
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the reformulated EM with the identi�ed parameters was validated experimentally under a standard driv-

ing cycle. Moreover, Fan et al. [33] further proposed a two-step parameter identi�cation approach based

on a large number of experimental datasets to identify 26 parameters for an NMC/graphite battery cell.

Although GA and PSO are widely used in parameter identi�cation of the EMs, the identi�cation e�ciency

and accuracy need to be further increased in both algorithm and methodology level considering the industry

need. Furthermore, parameter over�tting is a regular problem due to the lack of data as a result of the

required short testing time, which needs to be solved by redesigning the whole data-driven identi�cation

framework. There is also rare work comparing the identi�cation accuracy between the experimental method

and the data-driven method.

1.3. Contributions

This paper aims to bridge the aforementioned research gap and proposes a data-driven approach using

arti�cial intelligence, i.e., the cuckoo search algorithm, to identify the parameters of EMs in real-world op-

eration. The comprehensive benchmarking of the parameter values in literature de�nes the boundary values

of the parameters in electrodes and electrolytes with the same chemistry, remaining the physical meaning of

the parameters. Parameter sensitivity analysis was further carried out to categorize the total 26 parameters

into three groups with high, medium and low sensitivity. The proposed framework only uses the current

and voltage data of a battery to identify the parameters. Not only voltage error between model and cell

but also capacity error between two electrodes are de�ned as optimization objectives, which reduces the

identi�cation errors of the capacity-related parameters. Furthermore, the multi-step identi�cation approach

considering the di�erences of the parameter sensitivities increases the identi�cation accuracy of the param-

eters with lower sensitivity. The proposed framework was �rst validated numerically with a virtual cell and

compared with other data-driven methods considering the identi�cation errors of parameters, computation

e�ciency and convergence speed. The veri�cation of the data-driven parameter identi�cation framework

with an NMC/graphite commercial cell experimentally further highlights the robustness and reliability of

the approach compared with invasive experimental identi�cation methods.

2. Electrochemical modeling

The P2D model developed by Doyle et al. [34] describes the solid and electrolyte dynamics of LIBs in

the positive electrode, separator and negative electrode. On the macroscopic scale, the chemical reaction

kinetics are assumed to in
uence the battery dynamics only in x-dimension, where lithium ions can transfer

in the electrolyte throughout all domains in the liquid phase. On the microscopic scale, the solid particles

in both electrodes are assumed to be spheres with speci�c radii, and lithium ions can di�use along the

r-dimension inside the solid phase. As shown in the schematic of the P2D model in Fig. 1, the whole
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Figure 1: Schematic of the electrochemical modeling for LIBs

LIB is divided into three di�erent domains, i.e., anode (ranges from 0� to L � ), separator (ranges from

0s to L s) and cathode (ranges fromL + to 0+ ). The particles represent the porous electrodes and are

surrounded by the electrolyte, and the electrodes are separated by the separator. During charging, lithium

ions deintercalate from the active material in the positive electrode and move into the electrolyte solution.

By di�usion and ionic conduction, the lithium ions transport through the separator and arrive at the

surface of the negative electrode and �nally intercalate into the active material. Several coupled nonlinear

partial algebraic di�erential equations (PDAEs) map the transport processes of lithium ions in spatial and

temporal terms within the electrode and the electrolyte, which are summarized together with the boundary

conditions in Table 1. Both the concentration of lithium ions in electrodes and electrolyte, i.e., cs(r; x; t )

and ce(x; t ), and the potentials within the cell, i.e., solid potential, � s(x; t ), electrolyte potential, � e(x; t ),

open-circuit potential (OCP), U(x; t ), and lithium-intercalation overpotential, � (x; t ), can be derived from

these equations. To consider the properties of the battery materials, e�ective conductivity and di�usion

coe�cients with \e�" su�xes are used based on Bruggeman's theory. Moreover, a = (3 =Rp)" s represents

the speci�c interfacial area, � a = � c = 0 :5 are the charge transfer coe�cients, and the descriptions of the

other parameters are summarized in Table 2. The readers are referred to [35] for further derivation details.

Most numerical methods for model-based state estimation and parameter identi�cation require the model

to consist of ordinary di�erential equations (ODEs) or algebraic equations (AEs) rather than PDAEs. The

model-order reduction process is very challenging to carry out in a way that is numerically stable and

computationally e�cient for a wide range of battery operating conditions and parameter sets. In this work,

the PDAEs of the P2D model are transformed into ODEs and AEs using the �nite-di�erence method [36] in

micro-scale and the �nite-volume method [37] in macro-scale. The number of discretization nodes for both

micro-scale and macro-scale in each domain equals 10, considering the compromise between model accuracy

and computational e�ciency.
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Table 1: Summary of the governing equations of a P2D-model.

3. Parameter sensitivity analysis

In contrast to ECMs, EMs consist of a large number of physical parameters, and the experimental

identi�cation process of these parameters is very complicated, expensive and time-consuming [8, 9]. To

identify the parameters of the EM based on current and voltage data, reasonable parameter value ranges

need to be provided to maintain the physical meaning of the identi�ed parameters and the sensitivity of the

parameters under the speci�c ranges needs to be analyzed before identi�cation. As summarized in Table 2,

the total 26 physical parameters are grouped into four categories, i.e., geometric parameters, transport

parameters, kinetic parameters, and concentration parameters. The value ranges of these parameters are

determined for NMC/graphite cells based on a comprehensive benchmarking with more than 25 pieces of

literature and experimental measurement. The superscripts +,� and s of the parameters represent cathode,

anode and separator, respectively. To obtain the boundary values for the physical parameters, no other

constraints except the cell materials are applied in the literature review of the parameter values in Table 2,
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Category Parameter Unit Description Boundary Reference Sensitivity

Geometric
parameters

L + �m Cathode thickness 35 - 79 [8, 38{44] High

L s �m Separator thickness 10 - 30 [8, 38{43, 45, 46] Medium

L � �m Anode thickness 35 - 79 [8, 38{44] High

A m 2 Electrode surface area 0.378 - 0.395 Measurement High

" +
s - Cathode active material volume fraction 0.35 - 0.5 [8, 38, 42, 44] High

" �
s - Anode active material volume fraction 0.4 - 0.5 [8, 38, 42, 44] High

" +
e - Cathode electrolyte volume fraction 0.27 - 0.45 [8, 38{41, 43, 44, 47] Medium

" s
e - Separator electrolyte volume fraction 0.4 - 0.55 [8, 38{44, 47] Low

" �
e - Anode electrolyte volume fraction 0.26 - 0.5 [8, 38{41, 43, 44, 47] Medium

R +
p �m Cathode particle radius 1 - 11 [8, 40{42, 44, 45, 47] High

R �
p �m Anode particle radius 1 - 11 [8, 40{42, 45, 47] High

Transport
parameters

D +
s 10 � 14 m 2 s � 1 Cathode solid diffusion coefficient 1 - 10 [38, 40, 41, 43, 45, 47, 48] High

D �
s 10 � 14 m 2 s � 1 Anode solid diffusion coefficient 1 - 10 [38, 40, 43, 45, 47, 48] High

D e 10 � 10 m 2 s � 1 Electrolyte diffusion coefficient 1.5 - 4.5 [8, 39, 43, 49, 50] Medium

b+ - Cathode Bruggeman coefficient 1.3 - 1.7 [39, 45] Low

bs - Separator Bruggeman coefficient 1.3 - 1.7 [39, 43, 45, 48] Low

b� - Anode Bruggeman coefficient 1.3 - 1.7 [39, 45] Low

t +
0 - Transference number of lithium cation 0.25 - 0.43

[8, 38, 39, 43, 47{49, 51,

52]
Medium

� +
s Sm � 1 Cathode electrode conductivity 36 - 185 [53] Low

� �
s Sm � 1 Anode electrode conductivity 1 - 1 � 10 4 [54] Low

Kinetic
parameters

� + 10 � 11 m 2: 5 = ( mol 0 : 5 s ) Cathode reaction rate coefficient 1 - 10 [8, 38, 41, 42, 44] High

� � 10 � 11 m 2: 5 = ( mol 0 : 5 s ) Anode reaction rate coefficient 1 - 20 [8, 38, 41, 42] High

R f 10 � 3 
 m 2 Anode SEI film resistance 1 - 10 [42, 48] High

Concentration
parameters

c +
s; max 10 4 molm � 3 Cathode maximum ionic concentration 4.8 - 5.2 [8, 38, 42, 45, 47, 48] High

c �
s; max 10 4 molm � 3 Anode maximum ionic concentration 2.9 - 3.3 [8, 38, 42, 45, 47, 48] High

c e; 0 10 3 molm � 3 Initial electrolyte concentration 1 - 1.2 [8, 39{41, 43, 45, 47, 48] Medium

Table 2: Summary of parameter ranges and sensitivity of lithium-NMC-graphite cells.

which leads to a relatively large value range for some parameters. Therefore, these parameter boundaries

can be used for parameter identi�cation of almost all NMC/graphite LIB cells with small adaptions. The

only parameters that require opening the cell to determine the boundaries are the electrode surface area,

A, and the OCP of the electrodes. The con�dence interval of the measurement is used as the boundaries of

A. The opening of the cell can be avoided by implementing optical measurement methods to determine the

boundaries of the geometric parameters and determining the OCP from the literature.

Each physical parameter individually in
uences the model output, i.e., terminal voltage, under a de-

signed current input, which represents the sensitivity of the parameters. The consideration of insensitive

parameters with large variances in the optimization problem is known to decrease the overall estimation

quality substantially [55]. We have investigated the parameter sensitivity of the P2D model with the One-

At-a-Time (OAT) method in our previous work [56]. The sensitivity of the parameters is mainly determined

by the model structure, value range of the parameter itself, and the value of the other parameters. There-

fore, all the above three factors need to be chosen to be similar to those in real-world operating conditions

to investigate the sensitivity of these parameters. For all individual parameters, simulations were carried

out in which the examined parameter takes up ten discrete values under uniform distribution between its

value boundaries, as summarized in Table 2, and the remaining parameters are kept constant as the nominal

value. The in
uence of di�erent C-rates and depth of discharge (DOD) regions of the respective parameters
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Figure 2: Summary of the parameter sensitivity related to cell terminal voltage. The parameters are categorized into three

groups, i.e., high sensitivity, medium sensitivity and low sensitivity.

was tested at constant C-rate charging processes. The sensitivity of the seven capacity-related parameters

varies signi�cantly at di�erent DOD regions due to the horizontal shift of the end-of-charge point, while

the variations caused by the increase of the C-rate are moderate. In contrast, the other parameters show a

signi�cant sensitivity increase with an increase of the C-rate. In addition, the sensitivity of the parameters

on real-world driving cycles was also investigated and the results are summarized in Table 2 and depicted

in Fig. 2. Out of 26 parameters, 14 parameters are identi�ed as parameters with high sensitivity for the

terminal voltage considering the values of the normalized sensitivity index are over 0.01. Furthermore, six

parameters are with medium sensitivity and the remaining six parameters are with low sensitivity. Besides,

all capacity-related parameters, e.g., electrode surface area,A, electrode thickness,L + and L � , active mate-

rial volume fraction, "+
s and " �

s , and maximum electrode ionic concentration,c+
s;max and c�

s;max , are sensitive

for the terminal voltage. As the cell being analyzed in this work is a high-energy cell, the electrolyte- and

separator-related parameters have relatively low sensitivity, which will not be the same for the high-power

8



cells. The sensitivity analysis results in this work is also not universal for all cell materials and the same

analysis should be carried out again when one of the three dominating factors changes. For example, the 
at

OCV curve in LFP and LTO cells will reduce the sensitivity of the capacity-related parameters signi�cantly.

Considering the di�erences in the sensitivity of the parameters, the inaccuracy of the parameters with high

sensitivity can have an in
uence on the identi�cation of the parameters with low sensitivity. Therefore, a

multi-step parameter identi�cation approach based on the sensitivity information is needed.

4. Data-driven parameter identi�cation

As described in Section 3, the parameters of an EM for LIBs can be acquired through experimental

measurements or be derived from physical principles based on experimental data. However, some measure-

ments are time- and cost-intensive on the one hand and are limited in terms of accuracy on the other hand.

Therefore, a novel metaheuristic algorithm will be introduced for the �rst time as a data-driven parameter

identi�cation method for EMs in this section.

4.1. Cuckoo search algorithm

The cuckoo search algorithm (CSA) is a metaheuristic algorithm that has been developed by Yang et al.

[57, 58], inspired by the obligate brood parasitism of cuckoo. Three idealized rules were de�ned to simplify

the breeding behavior of the cuckoo as an algorithm [59]: 1) Each cuckoo can lay only one egg at each time

and dump it in a randomly selected nest. 2) The nests with high-quality eggs will be passed to the next

generation. 3) The number of host nests is not adjustable. A host bird discovers an alien egg with the

probability, pa 2 [0; 1]. If a cuckoo egg is exposed, the host bird may either throw the egg away or abandon

its own nest and build a new one elsewhere.

According to the above rules, the CSA was implemented as the following simple representation for the

global optimization. The 
owchart of the algorithm is illustrated in Fig. 3. As each egg in a nest denotes a

candidate solution, the task of CSA is to generate new and potentially better solutions to replace the worse

solutions in the current nest. The quality or �tness of a solution is evaluated by the objective function,

which is related to the problem to be solved.

To update a new solution set according to the �rst rule, the global random walk for exploring the search

space is implemented through the L�evy 
ight. For a given solution set, x t
i with i 2 [1; n], wheren represents

the number of solution sets (nests), the next solution setx t +1
i is generated by

x t +1
i = x t

i + � 
 L �evy(� ); (1)

where � = � 0 (x t
i - x t

best ) is the step size represented by a constant� 0 multiplied by the di�erence between

the i th solution set of the t th generation, x t
i , and the best solution so far, x t

best . The symbol 
 denotes
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Figure 3: Flowchart of the cuckoo search algorithm.

entry-wise multiplications and L �evy(� ) denotes the random walk step provided by L�evy 
ight, which is

drawn from L�evy distribution as follows,

L �evy(� ) �
u

jvj
1
�

; (2)

where the index � 2 (0; 2], u � N (0; � 2
u ) and v � N (0; � 2

v ) are drawn from normal distribution with

� u =

(
�(1 + � )sin ( ��

2 )

�
� (1+ � )

2

�
� 2

� � 1
2

) 1
�

; � v = 1 ; (3)

where �( �) is the standard Gamma function. The second rule is implemented by taking the best solution

set into the next iteration and the last rule is implemented by replacing the worse solution sets with new

randomly generated solution sets with the probability of pa. This replacement using a local random walk

can be mathematically de�ned as [60]

x t +1
i = x t

i + � 
 H (� � pa); (4)

where H (�) is a Heaviside function used to judge whether the host bird ejects the egg and is replaced or

remains in the nest, � 2 [0; 1] is a random number drawn from a uniform distribution and � = � (x t
j � x t

k )

denotes the step size, wherex t
j and x t

k are two di�erent randomly selected solutions at t th generation.
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To summarize, CSA is a population-based algorithm, in a way similar to the PSO. However, the solution

update rule based on the elitism used in CSA enables that the best solutions go to the next generation.

Furthermore, the randomization via L�evy 
ight is a random walk that is characterized by a probability

density function and has a power law tail. Another advantage of CSA is that only one parameter,pa, needs

to be adjusted [61]. Therefore, although PSO and CSA on average can yield similar e�ectiveness or solution

quality, CSA is more computationally e�cient than PSO, which will be further validated for parameter

identi�cation in Section 6.1.

4.2. Multi-objective multi-step parameter identi�cation framework

In this section, the framework for the data-driven parameter identi�cation of the EM is provided. As

depicted in Fig. 4a, the state-of-the-art experimental parameter measurement process [8, 9] for EMs is

very expensive and time-consuming, as it consists of many experiments with expensive test benches and

laboratory equipment. In this work, the parameters marked with blue will be identi�ed with basic testing

procedures in pre-identi�cation experiments, e.g., quasi-open circuit voltage (qOCV) test, electrochemical

impedance spectroscopy (EIS), hybrid pulse power characterization (HPPC) test, etc. The parameters

marked with orange, which are usually measured with post-mortem analysis by opening the cell, will be

identi�ed with the data-driven method. Based on the sensitivity analysis results, 20 parameters with high

and medium sensitivity were identi�ed with the framework and the six parameters with low sensitivity were

set as nominal values within their boundaries, as the variances of these parameters have little in
uence on

the model performance. Especially, a novel multi-objective �tness function considering both voltage errors

and capacity errors between electrodes is designed for the �rst time to improve the identi�cation accuracy

of the capacity-related parameters. Furthermore, a multi-step identi�cation approach is proposed to further

improve the identi�cation accuracy of parameters with both high and medium sensitivity. Both the multi-

objective and the multi-step approach are developed based on the physical understanding of the EMs and

contribute to the fast and accurate identi�cation of the parameters while maintaining their physical meaning.

4.2.1. Multi-objective �tness function

To evaluate the quality of the parameter sets during the global optimization process, �tness functions

are needed and will have a signi�cant in
uence on the �nal identi�cation performance. In this work, the

�rst term of the objective �tness function for parameter identi�cation with CSA is targeted at minimizing

the mean-square error (MSE) between the model-simulated voltage,̂V , and the experimentally measured

voltage, V , for a given input current as follows,

FFV =
1

N t

N tX

1

(V (t) � V̂ (t))2; (5)

where N t is the number of the data points of the dataset. With this �tness term, the global optimization

algorithm aims to �nd the optimal parameter values by reducing the errors between the model output

11



(a)

(b)

Figure 4: (a) Schematic of experiment-based parameter identi�cation. (b) Schematic of the multi-objective multi-step data-

driven identi�cation process, together with the training process inspired by machine learning to overcome over�tting.

and the measurement. Considering that all the capacity-related parameters are with high sensitivity and

in
uence the voltage trajectories strongly, a second �tness term is designed for the �rst time to constrain

the error between the capacity of both electrodes, i.e.,C+ and C � . The capacity error between cathode

and anode can be calculated with the identi�ed capacity-related parameters as follows,

FFC = abs

 
A � L + � "+

s � F � c+
s;max � (� +

0 � � +
100)

3600
�

A � L � � " �
s � F � c�

s;max � (� �
100 � � �

0 )

3600

!

; (6)

where� +
0 , � +

100, � �
0 and � �

100 are stoichiometry values indicating the usage of cathode and anode, which can be

identi�ed with the data from the qOCV test of the full cell and electrodes. It can be noticed that we have not

used the absolute error of the electrode capacity because the cell capacity is hard to be measured accurately,

even under a very low C-rate. Instead, the relative capacity error re
ecting the di�erence between the

capacity of the cathode and the anode is considered. WithFFC , the identi�cation accuracy of the capacity-

related parameters can be improved signi�cantly. In summary, the total objective �tness function consists

of two �tness terms considering both voltage error and capacity error as follows,

FFM =
N PX

n =1

wVn FFV + wcFFC (7)
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