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Abstract— This work deals with the design and validation of a
control strategy for hybrid balancing systems (HBSs), an emerg-
ing concept that joins battery equalization and hybridization
with supercapacitors (SCs) in the same system. To control this
system, we propose a two-layer model predictive control (MPC)
framework. The first layer determines the optimal state-of-charge
(SoC) reference for the SCs considering long load forecasts and
simple pack-level battery models. The second MPC layer tracks
this reference and performs charge and temperature equalization,
employing more complex module-level battery models and short
load forecasts. This division of control tasks into two layers,
running at different time scales and model complexities, enables
us to reduce computational effort with a small loss of control
performance. Experimental validation in a small-scale labora-
tory prototype demonstrates the effectiveness of the proposed
approach in reducing charge, temperature, and stress in the
battery pack.

Index Terms— Battery balancing, energy management, hybrid
energy storage, model predictive control (MPC).

I. INTRODUCTION

ELECTRIFICATION is currently envisaged as a key tech-
nology to develop vehicles that are more energy efficient

and lower in their environmental impact, especially when inte-
grated with renewable energies. Electrification is also aligned
with long-term societal and policy goals that aspire a full tran-
sition to electric and zero-emission transportation within the
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2030–2050 timeframe [1]. However, vehicular energy storage
systems pose several barriers that must be overcome to meet
this long-term goal. Batteries, currently the dominant technol-
ogy, struggle to offer high lifespan, large specific energy and
power, and fast charge rates at an affordable cost [2].

Battery packs are also prone to capacity, thermal, and
aging imbalances in their cells, which appear due to manu-
facturing tolerances [3], variations in operation conditions [4],
and faults [5]. Cell-to-cell variations limit the energy and
power delivery that can be transferred to/from the battery
pack. This limitation is more severe in series connections
of cells, leading to unbalanced charge/discharge of the cells’
energy, accelerated degradation, and premature faults, known
as the weakest cell problem [6]. To overcome this problem,
several approaches have been proposed, ranging from passive
balancing, active balancing, and reconfigurable batteries to
multifunctional balancing.

In passive balancing, a dissipative network of resistances
controlled by switches is connected in parallel with battery
cells. This network achieves equalization by dissipating energy
of the most charged cells. Simplicity and low cost are the most
attractive features of this approach, making it the preferable
choice in the industry, but at the expense of higher energy
losses [7]. More efficient solutions, based on active balancing
circuits, have also been considered in the literature. They rely
on power converters to transfer energy within the battery pack,
either from one cell to another [8], [9], from a cell to the
battery pack [10], or from a cell to a small energy buffer,
such a capacitor or inductor [9]. As a result, equalization
of voltage, charge, and temperature of battery packs can be
effectively performed, reducing stress in the weakest cells
and increasing driving range of the vehicle [9]. Higher costs
and volume represent the main drawback of these approaches.
Reconfigurable batteries are another solution to the weakest
cell problem. These approaches rearrange the structure of the
battery pack through a network of switches, which, in addition
to charge and temperature balancing, also enables isolation of
faulty cells [11].

More recently, there has been a trend toward the devel-
opment of multifunctional balancing electronics [12]. The
key idea is to exploit the balancing hardware to perform
more functions than just equalization. This integration of
functions decreases the number of components, volume, and
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costs. For example, Wang and Preindl [13] investigated a
power conversion architecture that simultaneously performs
battery equalization and charging of a low-voltage auxil-
iary battery; this approach eliminates the need for additional
dc/dc converters to supply the vehicle’s low-voltage system.
Singer et al. [14] proposed a modular multilevel converter
topology that can dynamically connect battery cells in series
or parallel. In addition to balancing functions, this topology
is able to generate output voltage with variable shape, which
eliminates the need to install bulky and costly voltage con-
verters between the battery pack and the load. Extensions of
this topology to handle multiphase loads have been recently
reported [15].

Another multifunction balancing concept based on a hybrid
balancing system (HBS) was proposed in [16]. Its power
electronics are able to perform battery equalization functions
and hybridization with additional storage systems, such as
supercapacitors (SCs) (see Fig. 1). Due to the integration
of these two functions into a single system, lower costs of
battery-SCs hybridization can be achieved. As a result, SCs,
with high power density and durability, can be integrated into
the energy storage system to support batteries during rapid
power bursts and reduce their degradation [17].

Multifunctional balancing solutions, such as the HBS,
present integration opportunities, but also control challenges.
These systems require the coordination of multiple power
converters, the enforcement of safety constraints (e.g., mini-
mum/maximum state of charge or voltages), and the exploita-
tion of tradeoffs between multiple technical and economic
objectives. To handle all these requirements, multiobjective
constrained optimization approaches are often employed. For
example, de Castro et al. [16] developed an optimal control
framework that relies on convex formulations and full preview
of the driving cycle for HBS control. Despite being able to
provide optimal solutions, the computational effort of this
approach is high, making it infeasible for implementation in
embedded control units. Receding horizon approaches, such as
model predictive control (MPC), are also often used to con-
trol balancing electronics. These approaches usually employ
shorter prediction horizons and reduced-order electrothermal
models to balance charge [18], [19], temperature [20], [21],
and/or voltage [22] of the battery pack in real time.

In this work, we investigate a receding horizon control
framework for HBS. This framework seeks to minimize charge
imbalances (q), temperature imbalances (T ), battery stress
factors (S), and energy losses (L). The first criterion (q) is
important to mitigate operational constraints induced by the
weakest cell, e.g., premature stopping of battery discharge
due to lower voltage/charge limits reached by the weakest
cell. The second criterion (T ) promotes uniform temperatures
and attenuates thermal gradients in the battery pack, one of
the main sources for aging variability in the cells [23]. The
third criterion (S) focuses on stress factors relevant to battery
degradation, such as load current and high temperatures [24].
The last criterion (L) avoids energy losses and inefficiencies.

While q, T, and L goals have been previously investigated
in [16], [20], and [21], the integration of stress factors (S)
within MPC-based HBSs has received less attention in the
literature to date. To fully optimize the operation of the HBS

(especially stress), longer prediction horizons are required.
This increases computational complexity and complicates
real-time deployment of single-layer (SL) MPC frameworks,
i.e., where all control goals (q, T, S, and L) are tackled in an
SL optimization problem.

Hierarchical MPC frameworks represent a promising
approach to reduce design and computational complexity.
These frameworks decompose the overall control design into
multiple layers, each operating with a different update rate,
prediction horizon, and model complexity [25]. Information
exchange between layers coordinates their decision-making.
Spurred by these ideas, we propose a hierarchical MPC
scheme for addressing (q, T, S, L) control goals in HBSs.
Our concept performs a functional decomposition of the
control problem into two layers (see Fig. 1). The higher layer
generates a reference for the SCs’ state of charge (SoC) that
provide a good tradeoff between S and L criteria; it uses simple
pack-level models discretized with long sample times. The
lower layer tracks the SoC reference and equalizes charge and
temperature (q, T ); it employs module-level prediction models
discretized with shorter sample times. The main advantage of
this multilayer (ML) control framework is the reduction of
total computational effort, while having a small penalization
in the overall control performance, when compared to SL MPC
configurations.

It is worth mentioning that ML MPC frameworks have been
previously applied to the control of batteries, in particular for
thermal and electrical energy management in automotive [26]
and aircraft [27] domains. However, these previous works
focused mainly on pack-level control of batteries, neglecting
charge or capacity imbalances. To address this gap, our work
goes one step further and investigates the potential of ML
MPC for module-level control of batteries while coping with
multiple goals (q, T, S, L), physical limits, and real-time
computational constraints. The effectiveness of the proposed
concept is experimentally demonstrated in a small-scale HBS
prototype, which represents another contribution of this work.
A preliminary version of this work was presented in [28]; it
is extended here by expanding the analysis and tuning guide-
lines of the ML MPC framework and providing experimental
validation of the concept in a small-scale prototype.

II. MODELING AND PROBLEM FORMULATION

A. Overview of the HBS

As shown in Fig. 1, the HBS is composed of a battery
pack, SCs, the balancing circuits, and the load. The battery
pack contains n battery modules, which can be formed by one
or more battery cells. Each module is connected to a balancing
circuit that transfers energy to/from other modules and SCs.
We assume that inner current loops are embedded within the
balancing circuits. These inner loops manipulate the convert-
ers’ switches such that balancing currents deviated from the
battery modules iB = [

iB,1 , . . . , iB,n
]T

follow the reference

setpoint u = [
i∗

B,1 , . . . , i∗
B,n

]T
. The inclusion of inner current

loops brings several advantages. For example, the design of
higher control layers can rely on low-order models for the
closed-loop response of the current loops, instead of complex
nonlinear and switching models of the power converters.
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Fig. 1. Block diagram of the HBS and the ML controller, highlighted in red
and the main focus of this work.

The inner loops also promote modular solutions: the design of
the higher control layers becomes independent of the power
conversion, which facilitates the reuse of HBS control algo-
rithms. More specifically, the balancing circuit can be imple-
mented with different types of power conversion (such as
buck-boost [29], dual active bridge [30], dual half bridges [16],
and among others; see [7], [8] for additional details) while
keeping the high-level HBS control unchanged. In addition
to control, the HBS also requires diagnosis functions. This
includes monitoring of the current, voltage, and temperature
of the battery modules, {(i j , v j , Tj)}n

j=1 and estimation of
relevant states for the HBS operation, such as SoC of the
battery modules q = [

q1 , . . . , qn
]T

and their capacity [31].
Our goal is to design a high-level control algorithm for the

HBS that fulfills multiple balancing, battery stress, and energy
loss goals (to be defined shortly) through manipulation of the
reference balancing currents u. The remainder of this section
presents a control-oriented model for the HBS, which is then
used to specify the control problem in more detail.

B. HBS Model

The HBS model is divided into three main subsystems:
1) the charge and temperature dynamics of the battery mod-
ules; 2) the charge dynamics of the SCs; and 3) the power flow
between the battery pack, SCs, and the load. To simplify nota-
tion, variables related to battery modules and balancing circuits
are grouped into n-dimensional vectors, such as q ∈ R

n and
iB ∈ R

n .

TABLE I

SUMMARY OF VARIABLES/FUNCTIONS EMPLOYED IN THE HBS MODEL

The first part of the HBS model is defined by the following
differential-algebraic representation:

q̇ = Bq i (1a)

Ṫ = AT (T − 1Tenv) + BT g(i) + Qc(T) (1b)

i̇B = AB iB + BBu (1c)

i = iB + 1iout. (1d)

The first equation represents the SoC dynamics of
the battery modules, which is dependent on the mod-
ule currents i = [

i1 , . . . , in
]T

and a diagonal matrix
Bq = diag[−(1/Q1), . . . ,−(1/Qn)], inversely proportional to
the nominal capacity Q j . The SoC q is further subject to the
following safety limits:

q ≤ q ≤ q (2)

where q and q represent the minimum and maximum SoC for
the safe operation of the battery module.

Equation (1b) captures the temperature of the battery
modules, T = [

T1 , . . . , Tn
]T

. Similar to [16], we assume a
lumped thermal capacitance (Ch, j ) and three main methods
for heat transfer. The first is the heat generated by the internal
power losses of the battery modules, which are assumed to be
dominated by Joule losses of the internal module resistance
(R j ). This is captured in (1b) by the term dependent on the
quadratic function g(i) = [

i 2
1 , . . . , i 2

n

]T
. The second method

is related to convective heat transfer between the battery mod-
ules and the environment (Tenv), with convective thermal resis-
tance Rcov, j . This is captured by the term AT (T−1Tenv), where
1 ∈ R

n is a column vector of ones. The third method deals
with conductive heat flow Qc(T) = [Qc,1(T), . . . , Qc,n(T)]T

between neighboring modules. Similar to [32], we assume
that this heat flow depends on the temperature difference
between neighboring modules and their thermal resistance
(Rcnd, j ), i.e., Qc, j (T) = (2Tj − Tj+1 − Tj−1)/Rcnd, j . Table I
summarizes the values of the matrices (AT , BT ) and functions
(g, Qc) employed in the thermal model.

Equation (1c) represents the response of the inner
current loops, approximated here by a first-order model
τB, j(d/dt)iB, j = −iB, j + u j , with dominant time constant
τB, j . This response is encapsulated into a linear state-
space representation, characterized by the diagonal
matrices AB = − diag(τ−1

B,1, . . . , τ
−1
B,n), BB = −AB .

The current references u are subject to the following
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Fig. 2. Equivalent electric circuit of the HBS (module level). The balancing
current iB, j in the converters’ primary side is independently controlled by the
converter’s current loop. The currents in the converters’ secondary side iBo, j
depend on the power-balance constraint iBo, j = (v j iB, j − RB, j i2

B, j )/vsc.

physical actuation limits:
U = {u ∈ R

n : u ≤ u ≤ u} (3)

where u and u represent the minimum and maximum bal-
ancing currents allowed by the power converters, respectively.
The algebraic constraint (1d) defines the current i applied
to the battery modules. This depends on the load (iout) and
balancing (iB ) currents and results from the direct application
of Kirchhoff’s current law.

The second part of the HBS model deals with the SCs.
To reduce model complexity, we assume that the SCs response
can be approximated by a first-order equivalent circuit [33],
composed of an ideal capacitor (Csc) and an internal series
resistance (Rsc), see Fig. 2. The SoC dynamics of the SCs qsc

and voltage vsc are defined as

q̇sc = −Q−1
sc isc (4)

vsc = kscqsc − Rscisc (5)

where Qsc is the capacity, isc the current of the SCs, and ksc =
Qsc/Csc is an SoC-to-voltage constant.

To prevent physical damage to the SCs, qsc is subject to
the following minimum (q

sc
) and maximum (qsc) operational

limits:
q

sc
≤ qsc ≤ qsc. (6)

The third part of the HBS model captures the power flow
between the battery, SCs, and the load. Since the load and
battery pack are connected in parallel, the load power (pout) is
the product of the load current (iout) and the terminal voltage
of the battery pack (

∑
j v j )

pout = iout

∑
j

v j = iout(1Tv) (7a)

v = voc(q) − Ri. (7b)

To decrease model complexity, we assume that the termi-
nal voltage of the battery modules v = [

v1 , . . . , vn
]T

can
be approximated by an SoC-dependent open-circuit voltage
voc(q) minus the voltage drop in the internal resistance of
the battery modules, Ri, where R = diag(R1 , . . . , Rn) is a
diagonal matrix dependent on the internal resistance R j of the
modules.

The power transferred between the power converters and
the SCs is defined as

psc = vTiB − iT
BRB iB (8a)

= −kscqscisc + Rsci
2
sc. (8b)

The first algebraic relation (8a) establishes that the power
extracted from the battery modules (vTiB) is transferred to
the SCs (psc) and supplies the energy losses of the power
converter. These losses are assumed to be lumped into a
Joule heating term, iT

BRB iB , where RB = diag(RB,1, . . . , RB,n)
is a diagonal matrix dependent on the converter’s internal
resistance RB, j . The second algebraic relation (8b) establishes
the internal power balance of the SCs.

To simplify the controller design, we assume that the
dynamics of the inner current loops (1c) can be neglected,
i.e., iB ≈ u. This simplification is justified due to the
time-scale separation that exists between the SoC and temper-
ature dynamics (order of seconds/minutes) and the low-level
current loops (order of milliseconds). Another simplification
that we adopt is related to the substitution of variables
[e.g., (1d) can be directly inserted into (1a) and (1b)], which
allow us to reduce the number of algebraic constraints. Due
to these simplifications, the HBS model can be compactly
represented as

q̇ = Bq(u + 1iout) (9a)

Ṫ = AT (T − 1Tenv) + BT g(u + 1iout) + Qc(T) (9b)

q̇sc = −Q−1
sc isc (9c)

0 = hb(q, u, isc, qsc, iout) = kscqscisc − Rsci
2
sc (9d)

−uTRBu + uT(voc(q) − R(u + 1iout))

0 = ho(q, u, iout, pout)

= iout(1T(voc(q) − R(u + 1iout))) − pout. (9e)

The first three equations capture the SoC and temperature
dynamics. The algebraic constraint hb(·) = 0 is related to
the power balance between battery modules and SCs, while
ho(·) = 0 captures the power balance with the load.

The parameters of HBS model employed in this work
are shown in Table II. They are based on a small-scale
experimental setup, described in detail in Section V.

C. Control Goals

The HBS control has three goals: 1) equalization of charge
and temperature; 2) minimization of energy losses; and 3) min-
imization of battery stress.

1) Equalization: To fulfill the first goal of charge equal-
ization, it is desirable to operate with small SoC variations
between the battery modules [20]. These variations are usually
defined as differences with respect to the average behavior of
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the battery pack, i.e., �qi = qi − q̃, where q̃ = (1/n)1Tq is
the average SoC. This is equivalent to

�q =
⎛
⎜⎝I − 1

n

⎡
⎢⎣

1T

...
1T

⎤
⎥⎦

⎞
⎟⎠q = Mq (10)

where �q = [
�q1, . . . ,�qn

]T
. Similarly, to achieve thermal

equalization, it is desirable to operate with small temperature
variations �Ti = Ti − T̃ , where T̃ = (1/n)1TT is the average
temperature in the pack. This is equivalent to

�T = MT (11)

where �T = [
�T1, . . . ,�Tn

]T
.

2) Losses: The second goal considers power losses (pl)
in the SCs, batteries, and power converters. These losses are
compactly defined as

pl = hl(u, isc, iout)

= Rsci
2
sc + (u + 1iout)

TR(u + 1iout) + uTRBu. (12)

3) Battery Stress and Degradation: Batteries degrade over
time (calendar aging) and due to their usage and operation
conditions (cycling aging). There are a wide range of physical
and chemical mechanisms that contribute to this degradation,
including growth of solid electrolyte interphase (SEI), loss of
active material, and among others [34].

In this work, we consider the following semiempirical
model to capture capacity fade due to cycling aging:

Q j = (1 − �Q j )QBoL, j (13)

�Q j = �QB, j (N, I j , Tj) + �QE, j (N, I j , Tj) (14)

where Q j is the module capacity, QBoL, j the beginning-of-life
capacity, N the number of charge/discharge cycles, and I j the
C-rate.1 The function �Q j (.) expresses the normalized loss
of capacity, composed of two terms. The first term, �QB, j ,
captures the slow aging mechanisms that occur during the
initial battery lifetime and is modeled through an Arrhenius-
like formula [35]

�QB, j (·) = θ j,1 exp

(
−θ j,4

Tj
+

(
θ j,2 + θ j,5

Tj
|I j |

))
Nθ j,3 (15)

where θ j,1, . . . , θ j,5 are parameters of the model. The second
term, �QE, j captures fast aging mechanisms that happen later
in the battery lifetime

�QE, j(·) = θ j,8 exp(N − N j,knee(·)θ j,7) (16)

N j,knee(·) = θ j,6 + θ j,9 I j + θ j,10Tj (17)

where θ j,6, . . . , θ j,10 are parameters, and N j,knee(·) is the “knee
point” where the transition to fast aging occurs. Fig. 3(a)
depicts the trend of this model, parameterized for lithium
nickel manganese cobalt (NMC)-graphite cells [36] similar to
the ones employed in our experimental setup. The results show
a loss of capacity as N increases, which becomes more severe
at higher temperatures (T ) and currents (I ).

1C-rate is a normalized current metric, expressed as the ratio between current
i j and the nominal capacity (in ampere-hours).

Fig. 3. (a) Normalized capacity drop (�Q) of the battery modules for differ-
ent temperatures and currents; red lines indicate the fitting of the model (14)
using experimental data (×,+, ◦) from [36]; aging model parameters included
in the Appendix. (b) Effect of temperature and current (c-rate) in the aging
rate (ω�Q), evaluated at N0 = 300.

In addition to capacity loss, it is also useful to consider
the aging rate ω j,�Q of the battery module, i.e., how fast
the capacity drops over the cycles. This can be obtained
by evaluating the rate of change of �Q j at a given cycle
number N0

ω j,�Q(I j , Tj) = d�Q(N, I j , Tj )

d N

∣∣∣∣
N=N0

. (18)

Ideally, the aging rate ω j,�Q should be minimized in order
to extend battery lifetime. However, this brings two difficulties.
First, this aging model is nonlinear, which complicates the con-
troller design, especially in predictive and optimization-based
frameworks as investigated in this work. Second, ω j,�Q

depends on a large number of parameters (θ j,1, . . . , θ j,10),
j = 1, . . . , n, which considerably increase calibration effort if
ω j,�Q is explicitly included in the controller design. To over-
come these challenges, we adopt here an implicit approach:
we minimize battery stress factors (current and temperature)
as proxies for aging rate ω j,�Q . This simplification is justified
by the strong correlation that exists between the value of these
stress factors and ω j,�Q for the battery operating window
considered in this work [see Fig. 3(b)]. Another simplification
that we follow here is related to temperature. In the sequel,
we minimize heat dissipation in the battery as a mean to
decrease temperature (and degradation). Leveraging these
simplifications, we seek to reduce battery degradation via
penalization of current and dissipated heat, which is encoded
into the following cost functions:

Js I =
∑

j

i 2
j , JsT =

∑
j

Qheat, j (19)

where Qheat, j is the heat generated by the battery module j .
Since the heat is assumed to be proportional to the square of
the module current (Qheat, j = R j i 2

j ), both costs can be grouped
together

JS =
∑

j

αS, j i
2
j = iTαS i = (u + 1iout)

TαS(u + 1iout) (20)
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TABLE II

PARAMETERS OF THE HBS MODEL

where αS = diag(αS,1, . . . , αS,n) is a stress weight matrix.
The scalar stress weight αS, j is inversely dependent on the
module’s present capacity, i.e., αS, j (Q j ) = (QBoL, j/Q j )

2. The
resulting weighting strategy assigns a higher stress penalty to
weaker modules (i.e., that experienced higher capacity fade),
protecting them from additional stress and accelerated aging.
A final note on the battery aging model; although not explicitly
included in the controller design, the battery aging rate ω j,�Q

is used to evaluate controller performance in Section V.

D. Control Problem

The main goal of this work can now be formulated as a
multiobjective constrained optimization problem.

Problem 1: Find the balancing currents u ∈ U that mini-
mize the following.

1) (q) SoC Imbalances: ‖�q‖ → 0.
2) (T) Thermal Imbalances: ‖�T‖ → 0.
3) (S) Battery Stress: JS → 0.
4) (L) Power Losses: pl → 0

while fulfilling the power-balance constraints (9d) and (9e)
and SoC limits (2) and (6).

III. SINGLE-LAYER QTSL

Problem 1 represents a challenging control problem. It has
a potentially large number of decision variables (n), with
physical constraints and nonlinearities. It also has a multi-
tude of objectives; the control input is subject to algebraic
constraints (9d) and (9e), which confine u to a manifold
dependent on pout and other variables. To simultaneously cope
with all these challenges, we design in this section an SL
controller, where all performance goals are addressed in the
same MPC formulation. In the sequel, we call this approach
SL qTSL since it allows us to simultaneously manage charge
(q), temperature (T ), stress (S), and losses (L).

A. Problem Formulation

Let us first discretize the dynamics from (9) using Euler’s
method and sample time τs

q(k + 1) = fq(k) = q(k) + τs f̃q(u(k), iout(k))

T(k + 1) = fT (k)=T(k)+τs f̃T (T(k), u(k), Tenv(k), iout(k))

qsc(k + 1) = fsc(k) = qsc(k) − τs Q−1
sc isc(k)

where k is the discrete time index and fT , fq , and fsc are vector
fields obtained from (9a)–(9c), respectively.

The SL qTSL framework uses the above discrete model to
predict the response of the system over an N-step horizon.
It maps the control goals, defined in Problem 1, to the
following optimization problem:

min
u(l|k)

JqT SL =
N∑

l=0

(
αq Jq(l|k) + αT JT (l|k)

)
(22a)

+ αSL

N−1∑
l=0

(
β JS(l|k) + (1 − β)JL(l|k)

)

s.t. q(l + 1|k) = fq(l|k), (22b)

T(l + 1|k) = fT (l|k), (22c)

qsc(l + 1|k) = fsc(l|k) (22d)

0 = hb(q(l|k), u(l|k), isc(l|k), qsc(l|k), iout(l|k)) (22e)

0 = ho(q(l|k), u(l|k), iout(l|k), pout(l|k)) (22f)

u(l|k) ∈ U, (22g)

q ≤ q(l + 1|k) ≤ q, q
sc

≤ qsc(l + 1|k) ≤ qsc (22h)

q(0|k) = q(k), T(0|k) = T(k), qsc(0|k) = qsc(k)

l = 0, . . . , N − 1 (22i)

where (l|k) indicates the predicted value of a given variable
at the time instant k + l.

The above problem has four cost functions

Jq(l|k) = �q(l|k)T�q(l|k) = q(l|k)TMTMq(l|k)

JT (l|k) = �T(l|k)T�T(l|k) = T(l|k)TMTMT(l|k)

JS(l|k) = (u(l|k) + 1iout(l|k))TαS(u(l|k) + 1iout(l|k))

JL (l|k) = pl(l|k) = hl(u(l|k), isc(l|k), iout(l|k)).

The first two costs penalize SoC and thermal imbalances
over the prediction horizon, the third penalizes battery stress,
and the last term penalizes energy losses. All four costs are
quadratic in the decision variables, while αq , αT , αSL, and β
are tuning weights, selected by the designer.

In addition to the discrete HBS model (22b)–(22f), the pre-
diction model also contains the physical limits (22g) and (22h)
and initial conditions (22i). The nonlinearities in the prediction
model are mainly due to quadratic terms dependent on the
currents, which appear, e.g., in the temperature dynamics and
power-balance constraints. It is also worth pointing out that,
because of the augmentation with the initial state, the pre-
dicted SoCs and temperature states [q(l|k), T(l|k), qsc(l|k)]
and related cost functions [Jq(l|k), JT (l|k)] have a longer
index range l ∈ [0, N] than the control inputs (u(l|k) ∈
[0, N − 1]) and their associated costs [JS(l|k), JL (l|k)].

The variables pout(l|k), Tenv(l|k) l = 0, . . . , N are treated
here as exogenous inputs. There are two approaches to define
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the value of these exogenous inputs during the prediction
horizon. The first approach exploits preview information,
e.g., based on the forecast of the output power, which leads
to a non-causal qTSL. Note that, with recent advances in
vehicle-to-infrastructure communications and the collection of
real-time traffic data, as well as increase in vehicle automation,
load forecast of vehicles is becoming easier to provide [37].
The second approach does not have access to preview infor-
mation. It assumes a predefined behavior for the exogenous
inputs during the prediction horizon such that a causal qTSL
can be obtained, for example, constant behavior

pout(l|k) = pout(k), Tenv(l|k) = Tenv(k) (23)

for l = 0, . . . , N , where [pout(k), Tenv(k)] represent the load
power and environmental temperature at the current time
instant.

The dynamics of the prediction model in (22) are inherent
slow in time. The SoC dynamics (22b) and (22d) are based
on the integration of the battery and SCs current, while
the temperature dynamics have a dominant time constant
(Ch, j Rcov, j ) on the order of minutes. In practice, the load
power disturbance pout represents the fastest variable, which
is typically discretized with a 1-s sample time [38]. Because
of this, a sample time τs = 1 s is adopted in the discretization
of the prediction model.

The qTSL MPC implementation follows a receding hori-
zon strategy, i.e., at each time step, the optimal solution
of (22) is computed [u∗(l|k)], and then, the first element
[u∗(0|k)] applied to the HBS. Because of nonlinear constraints,
e.g., (22f), finding optimal solutions is a challenging task.
To assist in the search of optimal solutions, an interior point
optimizer (IPOPT) [39] was employed.

B. Analysis and Tuning Guidelines

The SL qSTL framework allows us to address all control
goals established in Problem 1. However, this also brings
several challenges. One challenge is related to the MPC
calibration, i.e., how to select the weights αq , αT , αSL, and
β, as well as prediction horizon (N), such that all costs are
simultaneously minimized. Computational effort is another
challenge; selecting a large prediction horizon (N) might
improve performance, but the computational cost increases,
compromising real-time execution. In addition, load fore-
cast (23) might not be always available across long horizons,
which might also have a negative impact on the control
performance. These issues are analyzed in this section.

To assist us in the analysis, we define several performance
metrics, related to the SoC imbalances (�qrms), temperature
imbalances (�Trms), energy losses (El), and battery stress
metrics, such as root-mean-square current irms and maximum
temperature Tmax. Table III presents the definitions of these
metrics.

1) Guidelines for Weight Calibration: We first consider
mono-objective MPC controllers that focus only on one per-
formance criterion and are parameterized as follows.

1) q-Controller: αq = 1, αT = 0, αSL = 0, and β = 0.
2) T-Controller: αq = 0, αT = 1, αSL = 0, and β = 0.

TABLE III

DEFINITION OF PERFORMANCE METRICS

Fig. 4. Normalized performance metrics for (a) no control and (b) mono-
objective controllers (N = 100). Note: ideal controller would be a single point
at the origin (with zero normalized cost); the chart’s area measures the overall
distance to such ideal controller.

Fig. 5. Tradeoff between battery stress and energy losses during β calibration.

3) S-Controller: αq = 0, αT = 0, αSL = 1, and β = 1.
4) L-Controller: αq = 0, αT = 0, αSL = 1, and β = 0.
5) No Control: u = 0.
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Fig. 6. (a) Calibration of weight β. (b) Calibration of weight αq (with β = 0.4). (c) Calibration of weight αT (with β = 0.4, αq = 8e6). Final weighted-
calibrated qTSL controller: (αSL = 1, β = 0.4, αq = 8e6, αT = 3e3, and N = 100).

These mono-objective controllers can be used to deter-
mine the best attainable values for the performance metrics,
i.e., utopic metric values.

Next, we normalize the performance metrics to facilitate the
comparison between controllers

x ′ = x − xmin

xmax − xmin
(24)

where x is one of the performance metrics defined in Table III,
x ′ is its normalized value, xmin is the minimum value of the
metric x obtained with mono-objective controllers, and xmax is
the maximum. In this normalization, x ′ lies in the range [0, 1].
If x ′ = 1, then the metric is at the maximum cost achieved by
all controllers, while a zero value implies the minimum cost.

Fig. 4 shows the normalized performance metrics of the
mono-objective controllers obtained with a scaled version
of the driving cycle US06 [38], prediction window N =
100, and sample time τs = 1 s. The results indicate that
each mono-objective controller has different strengths and
weaknesses. The q- and T-controllers are good for balancing
purposes, offering the lowest costs for �q ′

rms and �T ′
rms, but

exhibiting higher currents and temperatures. The S-controller
provides good balancing and stress performance, but at the
expense of high energy losses. The L-controller reduces
energy losses but degrades all other metrics.

To tune the MPC weights, we propose the following prac-
tical guidelines.

1) β Calibration: We initialize the controller with L para-
meterization (αq = 0, αT = 0, and αSL = 1) and then
search for the weight β that provides an acceptable
tradeoff among the battery stress and energy losses
criteria, i.e., the knee of the curve shown in Fig. 5.

2) αq Calibration: Next, we move to the tuning of αq and
focus on further reduction of SoC imbalances. Fig. 6(b)
shows that higher αq decreases �q ′

rms in the direction of
the utopic value set by the S-controller.

3) αT Calibration: The final step consists of increasing αT

as a means to further reduce the thermal imbalances
[Fig. 6(c)]. This step might also degrade other metrics,
particularly SoC balancing; if this occurs, the designer
should use αT as the final “tuning knob” to obtain an
acceptable tradeoff between the performance metrics.

Fig. 6 shows the effect of the three main calibration steps.
The performance of the calibrated qT SL [Fig. 6(c)] is very
close to the best balancing and stress metrics obtained with
mono-objective controllers while providing a good comprise

Fig. 7. Effect of the length of the prediction horizon (N ) on the performance
of mono-objective and SL qTSL controllers. Note: longer prediction horizons
significantly reduce battery stress (−10%) and energy losses (−20%) but do
not affect balancing goals.

with energy losses (in the sense that these losses are still
inferior to the ones generated by the No Control variant).

2) Prediction Horizon: To investigate the impact of the
prediction horizon (N), the mono-objective MPC controllers
and the calibrated qSTL were evaluated for different values
of N (Fig. 7). As expected, the mono-objective controllers
provide the best performance for their respective criteria,
defining a lower bound for the cost metrics. For SoC and
temperature balancing, the mono-objective controllers achieve
the minimum costs for a small prediction horizon (N < 10),
while longer horizons (N > 200) are needed to minimize
battery stress (irms) and energy losses (El). The calibrated
qTSL follows a similar trend as the mono-objective controllers:
higher prediction horizons N reduce the cost metrics. One can
also observe that the gap between qTSL and mono-objective
controllers is relatively small for most of the metrics; the
energy losses are the only exception.
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Fig. 8. Effect of prediction horizon N in the maximum battery temperature
[max j∈{1,...,n} Tj (t)] and SC SoC for the S-controller.

Fig. 9. Effect of the prediction horizons (N ) on the average computational
time of the SL qTSL controller (black line); sample time τs depicted by the
red-dotted line.

The battery stress is the most sensitive metric to the
prediction horizon N . To better understand this issue, Fig. 8
shows the SoC of the SCs, maximum temperature, and vehicle
velocity for the S-controller with different prediction windows.
Shorter prediction horizons quickly discharge the SCs (in less
than 200 s) and reduce battery stress only during the first part
of the driving cycle. The problem with this strategy is that
by the time, the vehicle reaches maximum speed and requires
high power levels (around 300–350 s) and the SCs are already
discharged and are unable to aid the battery pack. As a result,
higher temperatures are observed during the second part of
the driving cycle. In contrast, controller parameterizations with
longer prediction horizons (N = 200) do not discharge the SCs
at the beginning of the driving cycle; instead, they strategically
deploy the SCs charge during the second part of the driving
cycle (300–350 s) to aid the battery during the period with the
highest load. As a result, lower temperatures are observed.

This analysis demonstrates that a larger prediction horizon
N is key to prepare the SCs for future loads/disturbances and
reduce battery stress. However, this comes with a price: higher
computational times. This is shown in Fig. 9, which shows

Fig. 10. Effect of preview information in the SL qTSL controller (N = 100).

the computation time of the SL qTSL in the HBS embedded
platform based on a Raspberry pi 3 [40]. The computation
times reach dozens of seconds when the MPC prediction
horizon is larger than 40 s, violating real-time timing constraint
associated with the MPC sample time (τs).

3) Uncertain Load Forecast: The preview information
about the load power, pout(k), might not be always available.
To better understand the impact of this information, Fig. 10
shows the normalized performance of the calibrated qTSL
controller: 1) with exact preview information and 2) without
preview information and using the causal formulation (23).
These results show that the SoC and temperature balancing
metrics have a weak dependence on the preview information;
this is in line with the findings in Section III-B2, which
demonstrates that short prediction horizons are enough for
balancing tasks. The current and temperature stress are the
most sensitive metrics to preview information. Fig. 10 shows
a 40% decrease in normalized current and 20% decrease in the
normalized temperature when the qTSL operates with preview.

IV. MULTILAYER qT SL

Solving the SL MPC described in the previous section is
difficult. It requires the fulfillment of multiple goals (q, T, S,
and L), involves complex module-level models of the bat-
tery, and needs long prediction windows to optimize battery
stress while complying with computational time constraints.
One possibility to fulfill these latter constraints is to shorten
the prediction horizon of the SL MPC. As discussed in
Section III-B2, this strategy works well for battery balancing
tasks, but it induces “greedy” energy management behaviors
that focus too much on short-term performance and lead to
a quick discharge of SCs (see Fig. 8). This compromises
the SCs ability to effectively support the battery pack and
alleviate stress during the entire driving cycle. To mitigate
this shortcoming, we devise a two-layer MPC that operates
on different prediction horizons, model complexities, and time
scales (Fig. 11).

The high-level layer, called the reference generator (RG),
focuses on long-term energy management planning for the SCs
using a slow time scale. This layer computes reference trajec-
tories for the SC SoC (q∗

sc) that optimizes battery stress and
losses over longer prediction windows; it exploits simplified
pack-level prediction models and states, discretized with long
sample times, to keep computational effort low. The low-level
layer handles the short-term energy management and balancing
tasks with a higher degree of granularity and module-level
models using a fast time scale. It is based on the qTSL
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Fig. 11. Block diagram of the ML qTSL and its use of different prediction
horizons for the load forecast.

Fig. 12. Pack-level model of the HBS employed in the RG.

TABLE IV

VARIABLES AND PARAMETERS OF THE PACK-LEVEL MODEL OF THE

BATTERY AND BALANCING CIRCUITS

formulation presented in (22), augmented with an additional
cost term to track the reference trajectory q∗

sc. The reference q∗
sc

indicates the most suitable SC charge level that the low-level
layer should maintain to fulfill long-term energy management
goals. It is a critical mechanism to prevent the low-level MPC
(which uses short prediction horizons and complex module-
level models for balancing purposes) from becoming “greedy”
and quickly discharge the SCs.

A. High-Level Layer: RG

The RG prediction model neglects cell-to-cell variations and
views the battery pack as one virtual cell and the balancing
circuits as one virtual power converter (see Fig. 12). Only
average values of the battery SoC (q), current (i ), and capacity
(Q), as well as average balancing current (iB), are considered.
These average values are then used to compute the open-circuit
voltage (voc), terminal voltage (v), and internal resistance (R)
of the battery pack. The resulting pack-level battery model
can be approximated by an equivalent open-circuit voltage
connected in series with an equivalent inner resistance, which
is then connected in parallel with the virtual power converter
(see Fig. 12). The virtual power converter captures the average

Fig. 13. Simulation results of (a) SL control with Nτs = 200 s and
(b) ML with different SoC tracking weights, NRτ R

s = 200 s, Nτs = 10 s.
(b) Performance metrics.

Fig. 14. Small-scale laboratory prototype employed in the experimental
validation of the qTSL control framework.

pack-level flow of power from the battery and the SCs and is
subject to the following power-balance constraint:

psc = −vscisc = iBv − i 2
B RB (25)

where RB is the inner resistance of the equivalent power
converter. This constraint links the average power extracted
from the battery pack (iBv) with the power delivered to the
SCs (psc) and Joule losses in the converter (i 2

B RB ). Table IV
describes the pack-level variables and parameters employed in
the model.

Next, we combine the pack-level model of the bat-
tery and power converter together with the SCs and load
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Fig. 15. Block diagram of the setup employed in the experimental validation of the ML qTSL control framework. Note: battery modules #1 and #2 each
have a faulty cell, which is disconnected from the modules.

models (4) and (7a). This results in the following pack-level
HBS model:

q̇ = − 1

Q
i, q̇sc = − 1

Qsc
isc (26a)

i = iout + iB (26b)

pout = viout = (voc(q) − Ri)iout (26c)

0 = hr (qsc, isc, q, iB)

= kscqscisc + (voc(q) − Ri)iB − RBi 2
B − Rsci

2
sc. (26d)

The first set of equations represents the average SoC dynam-
ics of the battery and SC pack. The second equation relates
the average current in the battery modules (i ) to the output
current (iout) and average converter current (iB). The third and
fourth equations represent algebraic power-balance constraints
between the load/battery/SCs.

The MPC formulation of the RG uses a discrete-time
representation of (IV-A) to predict the response of the system.
To further decrease the computational load, the RG controller
operates with a slower sample time (τ R

s ). The RG optimization
problem is formulated as

min
iB (.)

JR =
NR−1∑
l=0

(
βRi 2(l|kR) + (1 − βR) p̃(l|kR)

)

s.t. q(l + 1|kR) = q(l|kR) − τ R
s

1

Q
i(l|kR), (27a)

qsc(l + 1|kR) = qsc(l|kR) − τ R
s

1

Qsc
isc(l|kR) (27b)

i(l|kR) = iout(l|kR) + iB(l|kR) (27c)

pout(l|kR) = (voc(q(l|kR)) − Ri(l|kR))iout(l|kR)

hr (qsc(l|kR), isc(l|kR), q(l|kR), iB(l|kR)) = 0

i B ≤ iB(l|kR) ≤ i B (27d)

q
sc

≤ qsc(l|kR) ≤ qsc (27e)

q(0|kR) = q(kR), qsc(0|kR) = qsc(kR)

l = 0, . . . , NR − 1 (27f)

where NR is the RG prediction horizon and kR is the time
index of the RG discretization step. The first five constraints
represent the discretization of the differential-algebraic sys-
tem (IV-A). The last three constraints contain physical limits

of the power converter (i B , i B ), SoC limits, and the initial
values of the battery and SC SoC.

The cost function JR penalizes battery stress (first term) and
power losses (second term)

p̃(l|kR) = Rsci
2
sc(l|kR) + Ri 2(l|kR) + RBi 2

B(l|kR). (28)

The weight βR included in the cost function allows the
designer to exploit tradeoffs between battery stress and energy
losses. After solving (27f), the RG produces a reference
trajectory for the SC SoC, q∗

sc(l|kR), which is tracked by the
lower level controller.

B. Low-Level Layer: Tracking and Balancing Controller

The design of the low-level controller relies on the qTSL
formulation (presented in Section III) extended with one addi-
tional cost term. This additional cost penalizes tracking errors,
i.e., differences between the SC SoC qsc and the reference q∗

sc.
The resulting MPC-based tracking and balancing controller is
formulated as

min
u(l|k)

JqT SL + Jsc s.t. (22b) − (22i)

where Jsc = αsc
∑N

l=1[qsc(l|k) − q∗
sc(l|k)]2 embodies the

summation of quadratic tracking errors weighted by αsc. Note
that, since the RG sample time is usually higher than the low-
level controller, q∗

sc(l|kR) needs be interpolated to generate
q∗

sc(l|k) at a higher sample rate. A linear interpolation was
employed in this work.

C. Calibration Guidelines and Analysis

The ML q ST L depends on a larger number of weights and
tuning parameters, including (NR, βR, and τ R

s ) for the RG
and (N, αq , αT , αSL, β, αsc, and τs) for tracking and balancing.
To calibrate these parameters, we employed the following
guidelines.

1) Prediction Horizons: The RG prediction horizon NR

should be large enough to anticipate and prepare the batteries
and SCs for future loads. On the other hand, the prediction
horizon for the balancing and tracking layer (N) should be
small to reduce computational time (which is significantly
higher in the tracking and balancing layer due to the complex
module-level prediction model). From the analysis present in
Fig. 7, NR equivalent to 200 s provides a good level of stress
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reduction in the battery, while a prediction of 10 s is sufficient
for balancing tasks.

2) Sample Times: The low-level tracking layer operates
with τs = 1 s, which is line with the typical sample time
of vehicular driving cycles; the RG layer was defined with
τ R

s = 5 s, which provided a good compromise between
computational load and performance.

3) Weights for Balancing, Stress and Losses: The weights
(αq , αT , αSL, and β) can be parameterized with the values
obtained during the calibration of the SL MPC. Since both
the RG and tracking layers have the same tradeoff goals for
battery stress and energy losses, it is desirable to set βR = β.

4) Weight for SoC Tracking: αsc allows us to weight how
closely the reference q∗

sc is tracked. For example, Fig. 13(a)
shows the results of q∗

sc tracking for different weights αsc under
the load conditions described in Section III-B. Using a small
weight (αsc = 1) causes a quick drop of the SC SoC; the
RG increases the reference q∗

sc over short bursts as a means to
raise qsc. However, since αsc is too small, the SoC tracking is
ineffective. Using a large weight (αsc = 107) produces a much
tighter tracking of q∗

sc; interestingly, it also yields results closer
to the SL tuned with long preview horizon (Nτs = 200 s).

The tight tracking of the reference q∗
sc brings several addi-

tional benefits. As shown in Fig. 13(b), the ML MPC with
higher αsc decreases the stress factors (current and tempera-
ture) while keeping the SoC and temperature balancing costs
low. Overall, the ML MPC with high αsc performs similar to
the SL in most of the metrics, but at the expense of higher
energy losses.

The ML MPC also reduced the computational effort nec-
essary to solve the qTSL problem. In particular, the average
calculation times obtained when running the SL MPC (Nτs =
200 s) algorithm on the HBS embedded control platform
were 18.24 s. The ML (NRτ R

s = 200 s and Nτs = 10 s)
requires less than 0.51 s, divided into 0.21 s for solving
the reference generation problem, and 0.30 for the low-level
tracking controller. Thus, the ML variant allows us to obtain
similar performance levels as the SL, but with a fraction
of the computational times, paving the way for its real-time
implementation.

V. EXPERIMENTAL VALIDATION

The qTSL control framework described in the previous sec-
tions was validated in a small-scale HBS laboratory prototype
(Figs. 14 and 15).

A. Description of the HBS Prototype

The prototype is composed of a small battery pack with
12 lithium NMC cells (LG 18650HG2). The cells were
arranged in a 4P3S configuration. Each module has four cells
connected in parallel, while the pack is composed of three
modules connected in series (Fig. 15). We further considered
that modules #1 and #2 have one faulty cell each (disconnected
from the battery pack), reducing the number of usable cells
in these modules to three. All cells in module #3 are healthy.
As a result of these faults, the battery pack has significant
imbalances that need to be managed by the controller, e.g.,
modules #1 and #2 have 75% of the capacity of module #3.

Fig. 16. Validation of the MPC prediction model for battery module #1
(modules #2 and #3 provide similar fitting results and are omitted due to
space constraints).

The SC pack is composed of six cells based on Maxwell
BCAP0310 P270 T10 and arranged in a 2S3P configuration.

The balancing circuits are based on dual half-bridge power
converters [41], providing galvanic isolation and bi-directional
power flow capabilities. Each converter has a proportional +
integral current loop, implemented on a TI TMS320F28377S
microcontroller, which tracks the reference currents (u)
through manipulation of the converter’s power semiconduc-
tors [42]. In addition, to command the load power requested
to the HBS, the programmable load BK Precision 8500 was
configured to track a downscaled version of the US06 driving
cycle. This driving cycle information is also shared with the
qTSL controller to enable load preview.

Both SL and ML variants of the qTSL framework were
implemented in an embedded control platform based on
Raspberry pi 3 [40] with a Quad Core 1.2-GHz BCM2837
64 bit CPU and 2 GB of memory. The resulting optimization
problems were solved using the Gekko Toolbox [43], a rapid
prototyping framework for numerical optimization, and the
IPOP numerical solver [39]. To prevent numerical infeasibility,
the constraints (22h) and (27e) were relaxed with slack vari-
ables and the MPC cost augmented with an additional term that
penalizes the ∞-norm (maximum) constraint violation [44].

B. Model Validation and State Estimation

The qTSL controller requires access to three types of states:
1) temperature of the battery modules (Tj ); 2) SoC of the
battery modules (q j ); and 3) SoC of the SC (qsc). The
first is measured by negative temperature-coefficient (NTC)
thermistors (NTCLE300E3103SB) that are fit to the exterior
of the battery cells. To simplify implementation, a single NTC
module is employed for each battery module. The SoC of the
battery modules is obtained through the Kalman filter tech-
niques [45]. This combines voltage and current measurements
(v j , i j) together with an equivalent electric circuit model of the
battery modules to produce the SoC estimation. This model is
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Fig. 17. Experimental results of different control variants. Note: dashed lines indicate operational limits. (a) No control. (b) SL. (c) ML.

based on the equivalent circuit discussed in Section II-B and
Fig. 2, augmented with a resistance–capacitor pair connected
in series to improve estimation accuracy. Finally, the SoC of
the SCs is computed based on SC voltage and current mea-
surements and inversion of (5), i.e., qsc = (vsc + Rscisc)/ksc.

The parameters of the qTSL prediction model, summarized
in Table II, were obtained from a combination of different
sources. Components’ datasheets provided the nominal values
for the SC parameters (Qsc, Csc, Rsc, and ksc) and nominal
battery charge capacity (Q j ), while the specific heat capacity
data from [46] and the battery mass allowed us to compute
the thermal capacity Ch, j . Due to the larger intercell separation
present in our experimental setup (see Fig. 14), we assumed
that the conductive thermal resistance Rcnd, j is very large
and the heat flow between neighboring modules is negligible
(Qc, j ≈ 0). Calibration tests were employed for estimating the
remaining parameters. In particular, open-circuit voltage at dif-
ferent SoC points (q j and voc, j ) was collected and then fit with
an affine voltage curve (voc, j (q j) = a j + b j q j ) through least
square methods. The parameters (R j and Rcov, j ) were also
identified through least square methods, designed to minimize
the error between measured and predicted voltage/temperature.
Fig. 16 shows the overall fitting results of the prediction
model for battery module #1 (the remaining modules have a

similar prediction accuracy). Both the predicted voltage and
temperature closely follow the experimental measurements,
yielding small average fitting errors: 17 mV for the voltage
and 0.11 ◦C for temperature.

C. Results and Analysis

The following control variants were experimentally evalu-
ated on the HBS prototype.

1) No Control (u = 0), a battery-only solution that does
not make use of the balancing hardware or SCs.

2) SL: Single-layer MPC with a short (and real-time capa-
ble) preview horizon, Nτs = 10 s.

3) ML: Multilayer MPC with prediction horizons NRτ R
s =

200 s, Nτs = 10 s, and emphasis on SoC balancing.
All control parameters employed in the tests are summarized

in Table V. The embedded control platform required 0.3 s
on average (0.81 s maximum) to solve the low-level MPC
problem, while the high-level MPC problem needed 0.21 s
on average (1.19 s maximum). These computational times are
in compliance with the timing constraints associated with the
MPC sampling times (τs and τ R

s ).
Fig. 17(a) shows the HBS operation without control. Due

to their reduced capacity, the faulty modules (#1 and #2)
discharge faster than the healthy module (#3), inducing SoC
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TABLE V

CONTROL PARAMETERS EMPLOYED IN THE EXPERIMENTAL TESTS

Fig. 18. Summary of performance metrics obtained during the experimental
tests for No Control, SL and ML MPC controllers. (a) SoC variations.
(b) Temperature variations. (c) Temperature increase. (d) Current stress.
(e) Average aging rate.

variations (�q) of up to 1.5%. Cells in the faulty modules are
also overloaded with higher currents. Note that the current
in the faulty modules is divided among three cells, while
healthy module has four cells. This leads to higher temperature
increases (2.8 ◦C in the faulty modules versus 0.8 ◦C in the
healthy module) and temperature imbalances of up to 1.2 ◦C.
It also increases the aging rate of the faulty modules by 6.6%
when compared to the healthy module [see Fig. 18(e)].

The results obtained with SL MPC are shown in Fig. 17(b).
One can observe a fast discharge of the SC SoC (qsc), reaching
the lower SoC limit in less than 220 s. This occurs because
of the SL’s small preview horizon, which is necessary to
ensure real-time execution. Closer inspection of the results also
reveals the emergence of two operating modes. In the first,

which occurs from 0 to 220 s, the SCs support all battery
modules: iB,1, iB,2, and iB,3 are negative in a large portion
of time, which indicates charging of the battery modules.
In the second mode, which occurs after 220 s, the controller
focuses mainly on SoC and temperature balancing; the bal-
ancing circuit discharges the healthy module (iB,3 > 0) and
charges the faulty modules (iB,1, iB,2 < 0) most of the time to
compensate for charge imbalances. From a performance per-
spective, the SL MPC improves every metric when compared
to No Control. As shown in Fig. 18, the SL MPC decreases
SoC imbalances by 70% and temperature imbalances by 50%;
the current stress and aging rate in faulty modules (#1 and #2)
is also decreased by 15% and 3.5%, respectively.

Fig. 17(c) shows the ML MPC. There are a few points worth
highlighting. First, due to the RG’s longer preview horizon,
most of the SCs energy is deployed during the later part of the
driving cycle (300–400 s) when larger power loads are applied.
These results are in line with those observed from simulations
in Section IV. Second, the ML MPC provides localized
support to the weaker battery; for example, during discharging,
faulty modules (#1 and #2) receive more current/support than
the healthy module (#3), which helps balance the battery pack.
Third, the ML MPC recharges the SCs during regenerative
braking periods, e.g., qsc during 100–130 s in Fig. 17(c). This
policy allows the SCs to support the faulty modules more
effectively during peak load demands that occur later in the
driving cycle.

As shown in Fig. 18, these features contribute to a superior
performance of the ML. In comparison with No Control,
the ML reduces SoC imbalances by 91% and temperature
imbalances by 70%. In addition, a 57% reduction in the
maximum temperature increase (above ambient temperature)
is observed, which is due to the reduced current stress (−28%)
and aging rate (−7%) in the faulty modules #1 and #2. The
ML also decreased the current stress in the healthier module
(−12%) in comparison to No Control due to better utilization
of the SCs energy.

VI. CONCLUSION AND OUTLOOK

A predictive control framework for HBSs was proposed
in this work. The control framework was able to optimize
multiple objectives, including charge, temperature, stress, and
losses (qTSL) while enforcing state and current constraints
and exploiting load forecast information. Computational and
tuning efforts were the main challenges that emerged in the
implementation of this framework. To address the first chal-
lenge, an ML control architecture was developed. This decom-
posed the control problem into a high-level layer, responsible
for generating SC charge references considering long load
forecasts and simple pack-level models, and a low-level layer
that tracked the SC charge references and equalized the battery
pack using more complex module-level models and short
prediction horizons. Due to the exploitation of different
model complexities and time scales, the ML architecture was
shown to reduce computation effort while still achieving strong
overall control performance. To address the second challenge,
practical calibration guidelines were proposed. These relied
on a sequential process, which helped the designer to quickly
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tune the weights of the predictive controllers. Experimental
validation with a small-scale laboratory prototype demon-
strated the ability of the ML framework to equalize charge and
temperature in a battery pack with significant capacity imbal-
ances. The control framework also exploited the inclusion of
SCs in the balancing system to reduce battery stress (current)
28%, aging rate 7%, and temperature 57% when compared to
No Control operation.

While this article focuses on implementation to explore
the potential performance benefits of ML MPC for HBSs,
theoretical techniques have been proposed in the literature for
ensuring stability and/or robustness of hierarchical and distrib-
uted control frameworks. For example, techniques developed
for energy systems include passivity analysis [47], contraction
theory [48], and constraint tightening [26]. Future work will
draw on this prior literature to provide analytical guarantees
for the proposed qTSL framework. We will also investigate
large-scale applications of this framework and improve the
computational efficiency of the tracking control layer, e.g.,
by exploiting suboptimal MPC approaches [49] or reference
governors [50] with reduced computational footprint.

APPENDIX

A. Parameters of the Aging Model

θ1 = 2.047 × 10−4, θ2 = 8.774 × 10−3, θ3 = 1.053, θ4 =
9.627, θ5 = 4.145, θ6 = 5.851 × 102, θ7 = 2.473 × 10−2, θ8 =
8.568 × 10−3, θ9 = −3.29 × 102, and θ10 = 1.966 × 101.
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